Monitoring multivariate process variability with individual observations via penalised likelihood estimation
نویسندگان
چکیده
Excessive variation in a manufacturing process is one of the major causes of a high defect rate and poor product quality. Therefore, quick detection of changes, especially increases in process variability, is essential for quality control. In modern manufacturing environments, most of the quality characteristics that have to be closely monitored are multivariate by the nature of the applications. In these multivariate settings, the monitoring of process variability is considerably more difficult than monitoring a univariate variance, especially if the manufacturing environment only allows for the collection of individual observations. Some recent charts, such as the MaxMEWMV chart, the MEWMS chart and the MEWMC chart, have been proposed to monitor process variability specifically when the subgroup size is equal to 1. However, these methods do not take into account the engineering and operational understanding of how the process works. That is, when the process variability goes out of control, it is often the case that changes only occur in a small number of elements of the covariance matrix or the precision matrix. In this work, we propose a control charting mechanism that enhances the existing methods via penalised likelihood estimation of the precision matrix when only individual observations are available for monitoring the process variability. The average run length of the proposed chart is compared with that of the MaxMEWMV, MEWMS and MEWMC charts. A real example is also presented in which the proposed chart and the existing charts are applied and compared.
منابع مشابه
Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...
متن کاملSimultaneous Monitoring of Multivariate Process Mean and Variability in the Presence of Measurement Error with Linearly Increasing Variance under Additive Covariate Model (RESEARCH NOTE)
In recent years, some researches have been done on simultaneous monitoring of multivariate process mean vector and covariance matrix. However, the effect of measurement error, which exists in many practical applications, on the performance of these control charts is not well studied. In this paper, the effect of measurement error with linearly increasing variance on the performance of ELR contr...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملPhase II monitoring of multivariate simple linear profiles with estimated parameters
In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...
متن کامل